×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2405.05151v1 Announce Type: new
Abstract: Motivated by the recent experimental study on a quantum Ising magnet $\text{K}_2\text{Co}(\text{SeO}_3)_2$ where spectroscopic evidence of zero-field supersolidity is presented [arXiv: 2402.15869], we simulate the excitation spectrum of the corresponding microscopic $XXZ$ model for the compound, using the recently developed excitation ansatz of infinite projected entangled-pair states (iPEPS). We map out the ground state phase diagram and compute the dynamical spin structure factors across a range of magnetic field strengths, focusing especially on the two supersolid phases found near zero and saturation fields. Our simulated excitation spectra for the zero-field supersolid "Y" phase are in excellent agreement with the experimental data -- recovering the low-energy branches and integer quantized excited energy levels $\omega_n=nJ_{zz}$. Furthermore, we demonstrate the nonlocal multi-spin-flip features for modes at $\omega_2$, indicative of their multi-magnon nature. Additionally, we identify characteristics of the high-field supersolid "V" phase in the simulated spectra, to be compared with future experimental results.

Click here to read this post out
ID: 843847; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: May 9, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 16
CC:
No creative common's license
Comments: