×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2405.05107v1 Announce Type: cross
Abstract: The Internet of Things (IoT) represents a significant advancement in digital technology, with its rapidly growing network of interconnected devices. This expansion, however, brings forth critical challenges in data security and reliability, especially under the threat of increasing cyber vulnerabilities. Addressing the security concerns, the Advanced Encryption Standard (AES) is commonly employed for secure encryption in IoT systems. Our study explores an innovative use of AES, by repurposing AES padding bits for error correction and thus introducing a dual-functional method that seamlessly integrates error-correcting capabilities into the standard encryption process. The integration of the state-of-the-art Guessing Random Additive Noise Decoder (GRAND) in the receiver's architecture facilitates the joint decoding and decryption process. This strategic approach not only preserves the existing structure of the transmitter but also significantly enhances communication reliability in noisy environments, achieving a notable over 3 dB gain in Block Error Rate (BLER). Remarkably, this enhanced performance comes with a minimal power overhead at the receiver - less than 15% compared to the traditional decryption-only process, underscoring the efficiency of our hardware design for IoT applications. This paper discusses a comprehensive analysis of our approach, particularly in energy efficiency and system performance, presenting a novel and practical solution for reliable IoT communications.

Click here to read this post out
ID: 844526; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: May 9, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 20
CC:
No creative common's license
Comments: