×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2310.14465v2 Announce Type: replace
Abstract: In this paper, a delay-angle information spoofing (DAIS) strategy is proposed for location-privacy enhancement. By shifting the location-relevant delays and angles without the aid of channel state information (CSI) at the transmitter, the eavesdropper is obfuscated by a physical location that is distinct from the true one. A precoder is designed to preserve location-privacy while the legitimate localizer can remove the obfuscation with the securely shared information. Then, a lower bound on the localization error is derived via the analysis of the geometric mismatch caused by DAIS, validating the enhanced location-privacy. The statistical hardness for the estimation of the shared information is also investigated to assess the robustness to the potential leakage of the designed precoder structure. Numerical comparisons show that the proposed DAIS scheme results in more than 15 dB performance degradation for the illegitimate localizer at high signal-to-noise ratios, which is comparable to a recently proposed CSI-free location-privacy enhancement strategy and is less sensitive to the precoder structure leakage than the prior approach.

Click here to read this post out
ID: 844540; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: May 9, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 16
CC:
No creative common's license
Comments: