×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2405.04933v1 Announce Type: new
Abstract: Starting from the vacuum Einstein Field Equations and a static axisymmetric ansatz, we find two new solutions describing an axisymmetric static vacuum spacetime with cylindrical symmetry: One of this exhibits an additional symmetry in $z$-direction and the other has $z$-coordinate dependent coefficients. In analogy to the Schwarzschild solution, these metrics describe a static vacuum spacetime and apply in similar settings except for the changed symmetry conditions. Analyzing the low-velocity limit corresponding to the Newtonian approximation of the Schwarzschild metric, we find an effective logarithmic potential. This yields flat rotation curves for test particles undergoing rotational motion within the spacetime described by the line elements, in contrast to Newtonian rotation curves. This analysis highlights how important the symmetry assumptions are for deriving general relativistic solutions.
One example of physical objects that are generally described in the static vacuum low-velocity limit (reducing to Newtonian gravity in the spherically symmetric case) and exhibit axial symmetry are disk galaxies. We show that symmetries and appropriate line elements that respect them are crucial to consider in such settings. In particular, the solutions presented here result in flat rotation curves without any need for dark matter. While these exact solutions are limited to static vacuum spacetimes, their application to physical galaxies relies on appropriate approximations. Nonetheless, they offer valuable insights into explanations for flat rotation curves in galaxies and their implications for dark matter.

Click here to read this post out
ID: 844578; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: May 9, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 20
CC:
No creative common's license
Comments: