×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

We investigate the space-time dependence of electromagnetic fields produced
by charged participants in an expanding fluid. To address this problem, we need
to solve the Maxwell's equations coupled to the hydrodynamics conservation
equation, specifically the relativistic magnetohydrodynamics (RMHD) equations,
since the charged participants move with the flow. To gain analytical insight,
we approximate the problem by solving the equations in a fixed background
Bjorken flow, onto which we solve Maxwell's equations. The dynamical
electromagnetic fields interact with the fluid's kinematic quantities such as
the shear tensor and the expansion scalar, leading to additional non-trivial
coupling. We use mode decomposition of Green's function to solve the resulting
non-linear coupled wave equations. We then use this function to calculate the
electromagnetic field for two test cases: a point source and a transverse
charge distribution. The results show that the resulting magnetic field
vanishes at very early times, grows, and eventually falls at later times.

Click here to read this post out
ID: 88295; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 26, 2023, 7:35 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 10
CC:
No creative common's license
Comments: