×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

Few-shot learning aims to adapt models trained on the base dataset to novel
tasks where the categories are not seen by the model before. This often leads
to a relatively uniform distribution of feature values across channels on novel
classes, posing challenges in determining channel importance for novel tasks.
Standard few-shot learning methods employ geometric similarity metrics such as
cosine similarity and negative Euclidean distance to gauge the semantic
relatedness between two features. However, features with high geometric
similarities may carry distinct semantics, especially in the context of
few-shot learning. In this paper, we demonstrate that the importance ranking of
feature channels is a more reliable indicator for few-shot learning than
geometric similarity metrics. We observe that replacing the geometric
similarity metric with Kendall's rank correlation only during inference is able
to improve the performance of few-shot learning across a wide range of datasets
with different domains. Furthermore, we propose a carefully designed
differentiable loss for meta-training to address the non-differentiability
issue of Kendall's rank correlation. Extensive experiments demonstrate that the
proposed rank-correlation-based approach substantially enhances few-shot
learning performance.

Click here to read this post out
ID: 301628; Unique Viewers: 0
Voters: 0
Latest Change: July 31, 2023, 7:30 a.m. Changes:
Dictionaries:
Words:
Spaces:
Comments:
Newcom
<0:100>